
Quantifying and Reducing the Cost
of Web Edits

Edward Benson
MIT CSAIL
Cambridge, MA 02139 USA
eob@csail.mit.edu

Copyright is held by the author/owner(s).
CHI 2013 Extended Abstracts, April 27–May 2, 2013, Paris,
France.
ACM 978-1-4503-1952-2/13/04.

Abstract
The web is an increasingly important medium of
expression for both technical and non-technical
authors, and the family of web languages (HTML, CSS,
Javascript, etc) is poised to become the de facto
content authoring format across disciplines. For such a
future to become possible, the ease with which
authors—especially non-technical authors—can
express themselves becomes paramount. This work
presents a method of reducing the complexity of
source-level HTML authoring and shows its
experimental impact on usability. Our initial findings
suggest a path toward simpler HTML source
organization without sacrificing rich, modern design.

Author Keywords
Web design; Web content editing; HTML

ACM Classification Keywords
H.5.4. [Information Interfaces and Presentation]:
Hypertext/Hypermedia - User Issues

Introduction
The family of web languages (HTML, CSS, JS, et al)
are increasingly becoming the de facto format for
content authorship. In addition to the tremendous
growth of the web for both publication and application
development, authors are increasingly using web
languages to write content for other platforms. All three
major eBook formats 1 make heavy use of HTML and
CSS. Math rendering libraries and multi-column text
support push web languages closer to being a viable
alternative to LATEXfor academics, with interactive
Javascript charts as an added bonus. And elementary
schools, led by the Partnership for 21st Century Skills,
are increasingly asking students to submit writing
assignments as blog posts and wiki pages [10] instead
of on paper.

WYSIWYG authoring tools are an important part of this
growing ecosystem, but raw, source-level editing is
also an essential skill. Web languages were designed,
after all, with text-mode source editing in mind. No
matter how sophisticated our WYSIWYG tools, there
will always be circumstances where an author with
knowledge of HTML and CSS is advantaged over one
at the mercy of a graphical tool.

A major hindrance to source-level HTML usability is the
complexity of the HTML being written. Plain,
content-centric HTML (<h1>, <p>, , , etc) is
light-weight and allows the author to focus on the
content. Modern web pages, by contrast, are steeped
in complex presentational HTML scaffolding necessary
to support the CSS which styles the page. Our
previous study found this design scaffolding accounts
for as much as 27% of the raw bytes of a web page

1EPUB, IBA (iBooks), and KF8 (Kindle)

and a much higher percentage of the tag complexity,
since content is mostly text while the scaffolding is
mostly tags [2].

This work proposes and evaluates a new method of
HTML source organization that mitigates the rising
complexity in HTML documents. The goal of this
method is to boost the usability of source-level HTML
editing to support a future in which HTML remains a
convenient format to edit by hand for both technical
and non-technical users.

The method, which we call mockup stitching, consists
of separating an HTML document into two documents:
one design mockup and one content document. A third
document contains a set of simple relations which
relate regions in one document to regions in the other.
Mockup stitching enables content authoring and design
authoring to be completely partitioned, and as a result,
content authoring can be performed using simpler
HTML than today’s techniques would permit.

Mockup stitching is not simply web templating, though
there are clearly parallels. Both the mockup and the
content document are coherently renderable web
pages, unlike the template paradigm. And the
document which stitches them is external to both, like
CSS. This enables the design mockup to even be a live
site hosted elsewhere.

Our evaluation consists of a user study which finds that
the simplified document structure made possible by
mockup stitching results in significantly less cost for
content edits. This suggests that mockup stitching
would be a useful practice to adopt across the many
communities which use web languages as their content
format.

Related Work
Prior work investigates the cost of web authoring from
a project management perspective [8]. We instead
focus on how the source-level authoring method affects
the cost. Methods to improve web authoring usability
generally fall into one of three categories: language
extensions, sensemaking tools, and automation.

Language extension methods focus on expanding the
basic vocabulary or syntax of existing languages.
Vocabulary examples include the video tag (HTML5)
and rounded corners in CSS3. Syntax approaches
such as HAML [3] and Markdown [6] provide a simpler
way to describe web documents, but they fail to
address the co-mingling of design and content
concerns within the HTML document. XML can provide
such a separation, but it require the user to resort to
XSLT, a complex, non-HTML authoring format. We
enable the author to achieve this separation of
concerns without leaving HTML.

Sensemaking approaches help the user better
understand the workings of a web document.
WebCrystal [4] and FireCrystal [9], for example, help
authors identify the source code that causes a web
fragment to appear or behave a certain way. Finally,
automation approaches enable the user to manipulate
low-level HTML by using a simpler, higher-level
interface. WYSIWYG editors are the canonical
example, and some have argued that such tools are
necessary for high-quality hypertext authoring [11].
More recent work focuses on assisting the task of web
design retargeting: CopyStyler [5] provides interactive
support with an editor interface that places pages
side-by-side, and Bricolage [7] uses machine learning
to automate the process.

Approach

[collection

JSON HTML

 <h1>Kirk</h1>

 <h1>Spock</h1>
 <h2>First Officer</h2>

 <h2>Captain</h2>

object

property

 {
 name: "Spock",
 position: "XO"
 },
{

 name: "Kirk",
 position: "Captain"

 }
]

Figure 1: The content page in our method uses the minimum
possible HTML structure to attain an isomorphic mapping to
JSON. The user can then express data as HTML—a
language intended for hand editing—instead of another, less
editor-friendly format, such as JSON.

Our approach is to split HTML documents into two
separate and self-contained documents: a design
mockup and a content document. The design mockup
contains all the complex HTML scaffolding and
Javascript code necessary to achieve the desired
content design. It could either be an actual page, live
on the web (a university department might maintain a
standard academic homepage mockup for example), or
a privately maintained mockup.

The content document is what the casual observer
might describe as a “1993-style” web page: a simple,
bare-bones HTML document containing just content.
This document contains the minimum possible HTML
structure that enables an isomorphic mapping from
HTML to a JSON object: an element for each
collection, each semantic object, and each object
property, as shown in Figure 1. For a blog post, this

might be three HTML elements: one to represent the
blog post object, and one to contain the title, and one
to contain the post body.

We relate this simplified content document to the
mockup using a simple CSS-like relational language
called Cascading Tree Sheets (CTS) described in [1].
CTS allows relations to be made between documents
using CSS selectors that allow a mockup to be used as
if it were a template, and the content document to be
used as if it were a data source for that template. The
end result is that the author is able to create and edit
web content using the simplified content document,
and these edits will have an effect at run-time on the
fully decorated, design-laden page.

Figure 2: Screen shots of the three course pages used in
our study.

Our method maintains an ascetic adherence to
backwards and forwards compatibility with current
practice: it uses nothing more than ordinary HTML
pages with a Javascript runtime to stitch them together.
Notably, this means that our method can leverage the
existing body of approaches to HTML authorship.
Because content documents, for instance, are ordinary
HTML, they can be authored in WYSIWYG editors.

Study and Evaluation
We evaluate this workflow with a user-study that
compares this mockup stitching approach to ordinary
source editing. Participants were asked to copy, paste,
and edit course announcements on a university class
page. We chose the copy, paste, and edit operations
because they are the quintessential primitive tasks of
anyone maintaining source-level web content, and we
chose university class pages because they are a
typical (and familiar) domain in which by-hand HTML
editing frequently occurs.

Our study consisted of 17 computer professionals
(both graduate students and industry professionals)
who program for a living, all of whom reported having
had experience authoring in HTML before. For each
action (copy, paste, edit), subjects performed a practice
task and then two timed tasks, for a total of 12 data
points per user. Subjects were randomly grouped into
two blocks, which differed in the order in which
methods were presented to the subject. Block one
performed tasks using traditional HTML editing first
(which we’ll call the HTML method) and block two
performed tasks using the simplified content document
first (which we’ll call the HTML-Simple method).

Our data set was created from three actual course
announcement pages from university courses, shown
in Figure 2. The HTML method utilized the raw HTML
from these pages. The HTML-Simple method utilized a
hand-created copy of each course page in which just
the announcements were extracted and the HTML
structure minimized to just four HTML elements per
announcement (a wrapper, title, time, and body).

Figure 3: Copy task using the HTML-Simple method. The
only difference to the HTML method is the HTML the subject
must navigate.

The experiment was automated as a web application
which guided participants through each step. For each
discrete task, the subject was presented with a briefing
of the steps they would perform, followed by the HTML
source for that task, which was syntax-highlighted and
line-wrapped to improve readability. For all tasks, we
recorded the time between the user clicking a “Begin
Task” button (after reading the briefing) and clicking a
“Finished” button. Task descriptions were:

Copy Task. Each copy task asked a user to copy
either the first, second, or third course announcement
from the HTML source and paste it into a text box.
Example shown in Figure 3.

Paste Task. Before starting the paste task, users
were given an HTML fragment to copy to the clipboard.
They were then asked to paste that fragment after the

first, second, or third course announcement in the
HTML source that was revealed.

Edit Task. Users were asked to change the title of an
announcement. To do this, they had to find the
announcement in the HTML source and then edit it.

0

50

100

●

●●

●

●

●

●

●

●

copy paste edit

Ti
m

e
(s

)

Method
HTML
HTML−Simple

Figure 4: Whisker plot results for the two methods on copy,
paste, and edit actions. Measurements are in seconds and
dots represent outliers.

We find that for all tasks, the simplified editing
approach results in faster edits, as depicted in
Figure 4. A two-way within subjects analysis of
variance found this interaction between the method
and the completion time to be significant:
F (1, 2) = 23.89, P < 0.001. Table 1 records mean time
to completion for each method and action.

These results suggest that communities that edit HTML
would benefit from dividing their HTML authoring

workflow into separate design- and content-centric
documents.

HTML HTML-Simple

Copy 53 13.6
Paste 31.1 8.5
Edit 25.6 12.6

Table 1: Mean time to completion, in seconds, for each
method and action type.

Future Work
We are currently extending this work to attain a fuller
picture of web authoring usability in two ways. First, we
are adding to the set of tasks that we test. This
experiment tested basic editing tasks, but we are also
interested in: (1) widget inclusion, in which we plan to
measure the usability trade-offs between Javascript
APIs and microformat-based APIs, and (2) retargeting
cost, in which local content is modified to match style
from elsewhere.

We are further extending our editing study to control for
various degrees of HTML complexity. Our current
approach measures a near maximum signal-to-noise
ratio against current practice; we plan to
programatically vary this ratio so that we can fit a curve
to the edit cost as a function of HTML design
complexity.

References
[1] Benson, E., and Karger, D. Cascading Tree

Sheets and Recombinant HTML: Better
Encapsulation and Retargeting of Web Content.
In WWW (2013).

[2] Benson, E., Marcus, A., Karger, D., and Madden,
S. Sync kit: a persistent client-side database
caching toolkit for data intensive websites. In
WWW (Apr. 2010).

[3] Catlin, H., and Weizenbaum, N. Haml.
[4] Chang, K. S.-P., and Myers, B. A. WebCrystal:

understanding and reusing examples in web
authoring. In CHI (May 2012).

[5] Fitzgerald, M. J. CopyStyler : Web design by
example. MIT Masters Thesis (2008).

[6] Gruber, J. Markdown language specification.
[7] Kumar, R., Talton, J. O., Ahmad, S., and Klemmer,

S. R. Bricolage: example-based retargeting for
web design. In CHI (2011).

[8] Mendes, E., Watson, I., Triggs, C., Mosley, N., and
Counsell, S. A comparative study of cost
estimation models for web hypermedia
applications. In Empirical Software Engineering
(2003).

[9] Oney, S., and Myers, B. FireCrystal:
Understanding interactive behaviors in dynamic
web pages. In VLHCC 2009 (2009).

[10] Partnership for 21st Century Skills. Framework for
21st Century Skills, 2012.

[11] Thimbleby, H. Gentler: A Tool For Systematic
Web Authoring. In International Journal of
Human-Computer Studies, vol. 47 (1997).

	Introduction
	Related Work
	Approach
	Study and Evaluation
	Future Work

